If it's not what You are looking for type in the equation solver your own equation and let us solve it.
195.83d+447.2d^2-82.58=0
a = 447.2; b = 195.83; c = -82.58;
Δ = b2-4ac
Δ = 195.832-4·447.2·(-82.58)
Δ = 186068.4929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(195.83)-\sqrt{186068.4929}}{2*447.2}=\frac{-195.83-\sqrt{186068.4929}}{894.4} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(195.83)+\sqrt{186068.4929}}{2*447.2}=\frac{-195.83+\sqrt{186068.4929}}{894.4} $
| 150.55d+335.4d^2-39.846=0 | | (x-22)+(2x-54)+(1/2x+11)=180 | | -2(x+8)=28 | | 3/4p-4=23 | | 5.3t=-15.9 | | (x-22)+(2x-54)+(.5+11)=180 | | 117.77d+335.4d^2-39.846=0 | | x+5x+4x-3=180 | | 1/5(a+10)=-1 | | (3x+55)=(8x+5) | | (x+4)+(4x-29)=180 | | 64=(4^5x)*16^x^2 | | 11/6y-13=-2 | | -3x^2+15x^2-48=0 | | -2x^2+30x-48=0 | | 3x+4=2×+6 | | 2x-5=8x+7-5x | | 139.37d+335.4d^2-34.93=0 | | 3x(x-6)-8x=-2+5(2x+1) | | 2x+5=2x+100 | | X^4-x^2-114=0 | | 12x+3=103 | | 10x=39.5 | | 10x-10=39.5-10 | | 9x=10+5+6x | | 2^(2x-1)=16 | | 2x-2=10-3- | | 3a+35=2a | | 10^-x=0.0347 | | 7+3y=60 | | 3-(z-8)=22 | | 4x+13x-6+0.75=7x+36-1.75 |